L.S. Starrett 1/2X18" No.496 Oil Harde Part# - 54147

1 EA
Manufacturer: L.S. Starrett
$35.84
Ship to
*
*
Shipping Method
Name
Estimated Delivery
Price
No shipping options

L.S. Starrett 1/2X18" No.496 Oil Harde Part# - 54147

Brand: L.S. STARRETT

Part Number: 54147

Weight: 1.33 lbs

Country of Origin: GERMANY

Minimum Order Qty: 1 EA

Features: O1 tool steel has better machinability than A2 tool steel, and must be hardened in oil | Meets ASTM A681 specifications | Ground with high precision to the specified shape and size | Standard tolerance

The O1 tool steel sheet has been precision ground and polished, meets American Society for Testing and Materials International ASTM A681 specifications, and has a standard tolerance. The O1 tool steel grade has better machinability than A2 tool steel. It must be hardened in oil, which can be done at relatively low temperatures for good dimensional stability. The sheet has been ground to achieve the precise shape and size.Steel is an iron alloy with carbon and other elements that modify the steel to achieve specific properties. In general, steels with higher carbon content have greater strength, hardness, and wear resistance, while those with lower carbon content have more formability, weldability, and toughness. Carbon steels, which include most AISI-SAE grades in the 1000 range, are classified by their level of carbon content as low (below 0.3%), medium (0.3% to 0.6%) and high (0.6% and above). Alloy steels, which include AISI-SAE grades in the 1300 and 4000 ranges and above, incorporate elements such as chromium, molybdenum, and nickel to modify properties like machinability and corrosion resistance. Tool steels, which include most grades with a letter and number grade designation, have high carbide content for wear resistance, high hardness, and the ability to hold a cutting edge. Some tool steels are designed to resist deformation when used in elevated temperatures.Tensile strength, used to indicate a material’s overall strength, is the peak stress it can withstand before it breaks. Wear resistance indicates the ability to prevent surface damage caused by contact with other surfaces. Toughness describes the material's ability to absorb energy before breaking, while hardness (commonly measured as indentation hardness) describes its resistance to permanent surface deformation. Formability indicates how easily the material can be permanently shaped. Machinability describes how easily it can be cut, shaped, finished, or otherwise machined, while weldability characterizes the ability to be welded.